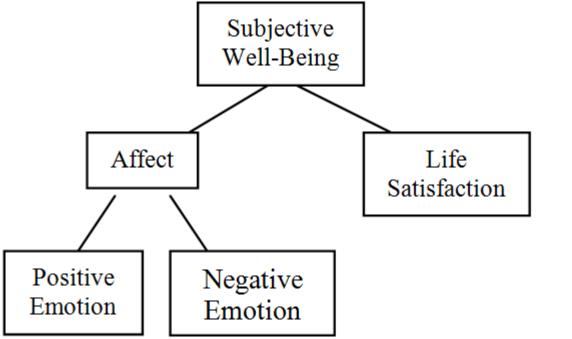


Measuring well-being through social media: obstacles and opportunities

Part I – GNH.today Index

Presented by Talita Greyling (talitag@uj.ac.za)


THE EUROPEAN MASTER IN OFFICIAL STATISTICS (EMOS) – 13 March 2024

Introduction

- Subjective well-being: definition and measures (SWB)
- Big Data and Social Media
- GNH.today Project construction of real-time highfrequency time-series data
- Validation of GNH.today data
- Examples using GNH.today data to explain trends in happiness
- Future developments
- Application of the GNH.today data: "Vaccination, happiness and emotions: using a supervised machine learning approach"
- Conclusion

Subjective well-being measures

Life satisfaction

• How satisfied are you with your life in general?

Positive Affect

- Enjoying life
- Loving others

Negative Affect

- Chronic worries
- Often angry

What is Big Data?

Data that are:

- voluminous set of information
- collected at a high *velocity*
- from *various* sources

Sources:

- Health sector databases
- Financial institutions databases
- Google searches
- Social Media

Types:

Structured, unstructured, and semi-structured datasets

Social media data – Big Data

Social Media Data is generated by

- posts
- images
- videos
- comments

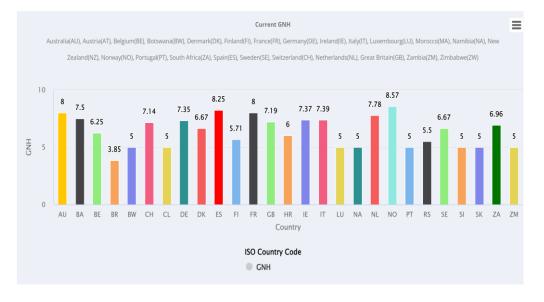
It gives opinions of people – ideal for subjective well-being measures

SOCIAL MEDIA ICONS

Examples of Social media platforms - number of users

Facebook – Meta- 3,5 bil Twitter (X) – Musk – 450 mil Instagram – Meta – 2 bil WhatsApp – 2 bil TikTok – 1 bil Reddit - 430 mil Pinterest - 450 mil Snapchat – 750 mil YouTube - 2,5 bil **Google Trends Users ???**

Advantages of Big Data/ Social Media Data


- **Reduced costs** and efficient collection compared to costly survey collection and administration
- **Real-time** analysis and decision-making versus lagged information sharing (surveys)
- Volume large datasets versus smaller survey datasets
- Continuous updating versus a snapshot in time
- Unbiased and passive data collection versus direct responses collected in surveys
- Attain **behavioural insights social media listening** without the biases found in survey data
- Many more....

Limitations of Big Data/ Social Media Data

- Not a representative sample; But can adjust the data to be more representative (see lacus & Porro, 2021).
- To analyse Big Data, we need **sophisticated methodologies**.
- Big Data is **not always a substitute for surveys**, as surveys can provide context, nuance, and specific information that may not be captured in large-scale datasets.
- The **quality of the data** is crucial. Garbage in, garbage out.

Gross National Happiness.today (GNH.today)

What?

High frequency near to real-time time-series data on happiness and emotions of populations

Countries:

Was ten countries:

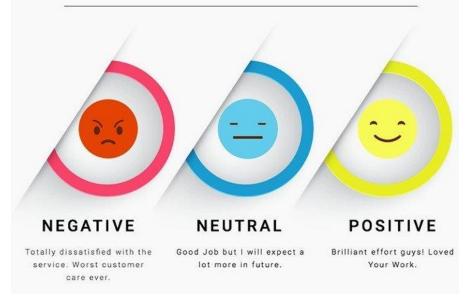
Australia, New Zealand, South Africa, Belgium, Germany, Great Britain, France, Italy, the Netherlands, Spain.

FIFA World Soccer Cup 2022:

16 Countries – Argentina, Brazil, Morocco, Croatia, Uruguay, Portugal

GROSS NATIONAL HAPPINESS

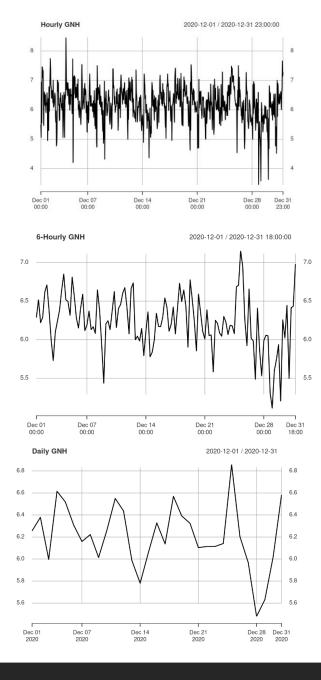
GNH.today – the use of NLP – to determine sentiment - the key of GNH.today

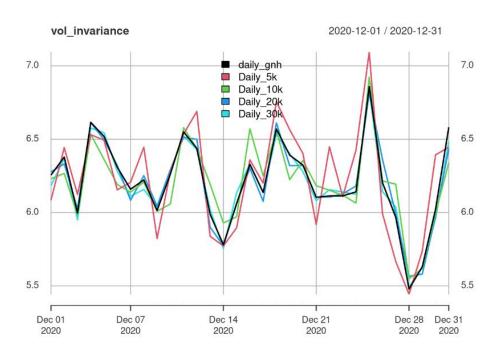

What is a lexicon?

Library of words – in NLP – a database that a computer program uses to understand the meaning and sentiment of words.

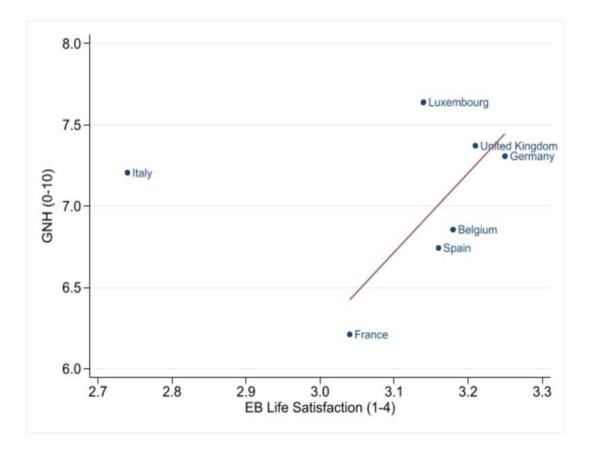
Why use lexicon - rule-based sentiment analysis (rather than a machine learning algorithm)

- straightforward
- less computationally expensive
- It doesn't require a large dataset for training,
- suitable for high-frequency analysis in real-time
- easier interpretation of how sentiment scores are derived,
- useful in understanding the rationale behind sentiment scores


SENTIMENT ANALYSIS


GNH.today - How?

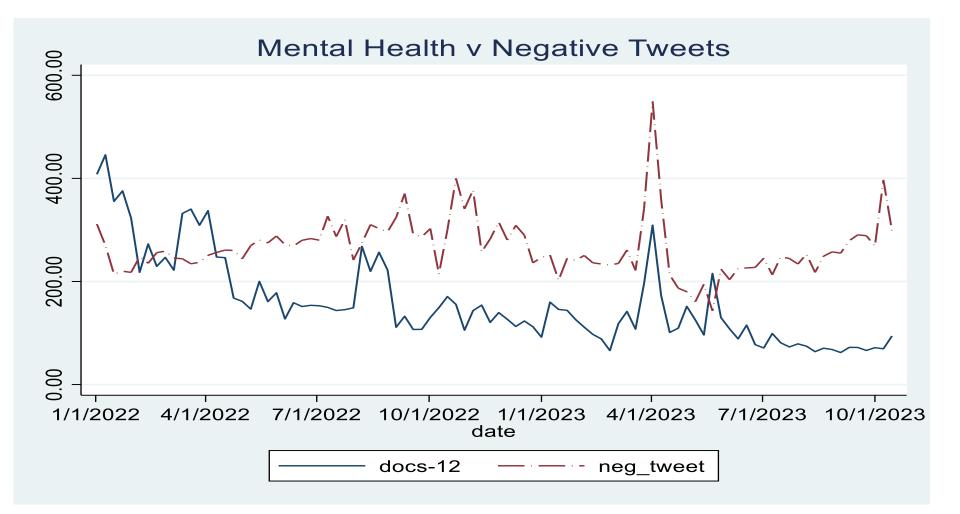
- Extract tweets in real-time +/- 1 mil per day geo-located (UTF-8)
- Determine languages in ten countries 64 languages. Translate – if needed
- Use lexicons to determine Sentiment/emotion analysis on the live stream of tweets
- Lexicons: Sentiment140, SYZHUET bouquet, VADER, – further R&D –
- Average scores per hour/day/
- derive index using a balance equation
- Index varies between 0-10
- Accepted as official data by the New Zealand Statistical Services


GNH.today - Internal Validity

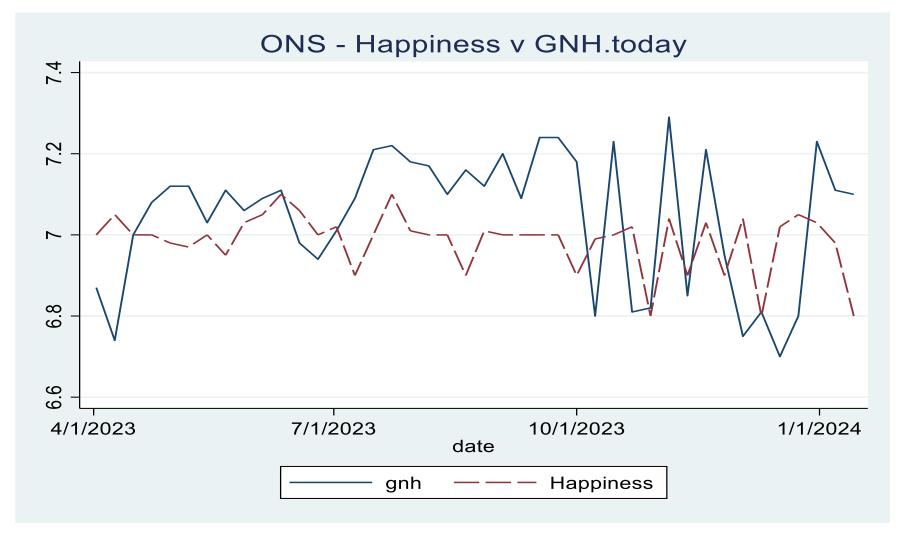
- <u>Using timescale invariance</u> to determine whether the sampling period significantly influences the GNH values.
- GNH.today is normally calculated per hour-
- what if we use averages per 6 hours or per day

GNH.today – Internal Validity

- Using volume invariance
- To test if the volume of the sample directly influences the index, we sample
 5k, 10k, 20k, and 30k tweets from the data extracted daily.


GNH.today – Validity

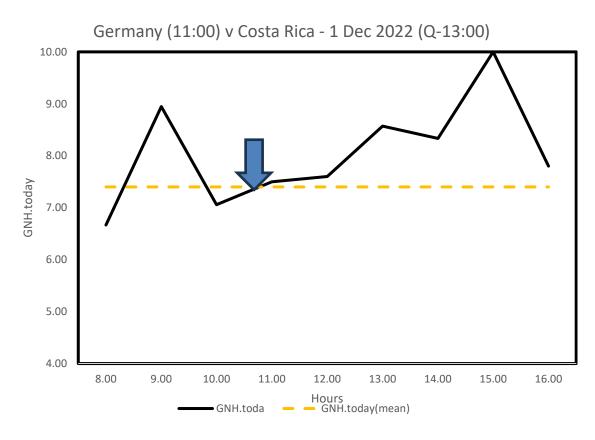
Mean **GNH correlates** positively with average life satisfaction of the **Eurobarometer** (Eurobarometer, Summer 2020).

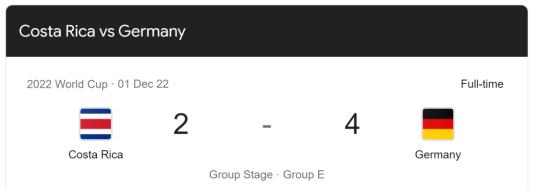

The GNH score is the average by country over the same period that the Eurobarometer was collected, from 9 July to 26 August 2020.

GNH.today – Validity (Tweets v EARS (WHO) - Mental Health)

EARS, Early AI-supported Response

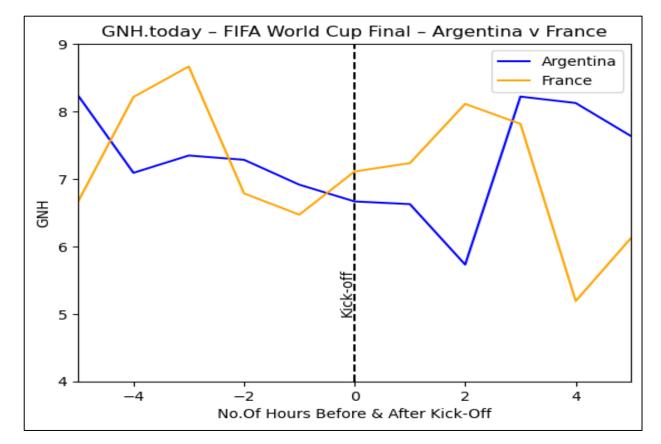
GNH.today – Validity (GNH v Happiness - ONS)





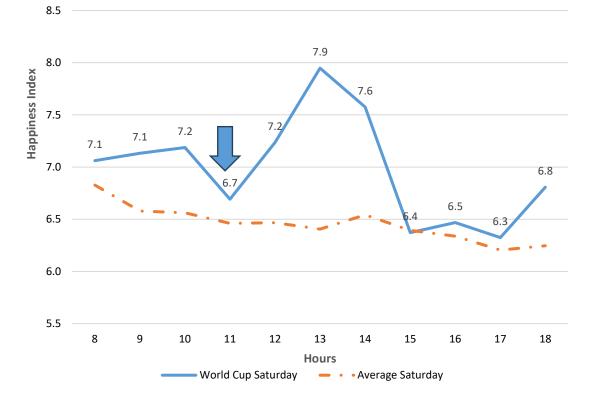
GNH.today – validity-Examples

FIFA World Cup 2022 Argentina (6 am) – Saudi Arabia (Q -1pm)



GNH.today – validity -Examples

FIFA World Cup 2022 Germany (11 am) – Costa Rica


GNH.today – Validity - Examples

FIFA World Cup Final – Argentina v France 2022


GNH.today – Validity - Examples

World Cup – Rugby – South Africa win

GNH.today – Future R&D

Twitter:

- Twitter (Elon Musk) closed the book on Twitter Research.
- This means the end of an era of research projects which contributed a wealth of knowledge on human behaviour.

New projects:

- Facebook
- Google Trends

Application of the GNH.today data Vaccination, happiness and emotions: using a supervised machine learning approach. (Greyling, Greyling & Rossouw, 2023)

The COVID-19 pandemic is an example of an immense global failure to curb the spread of a pathogen and save lives.

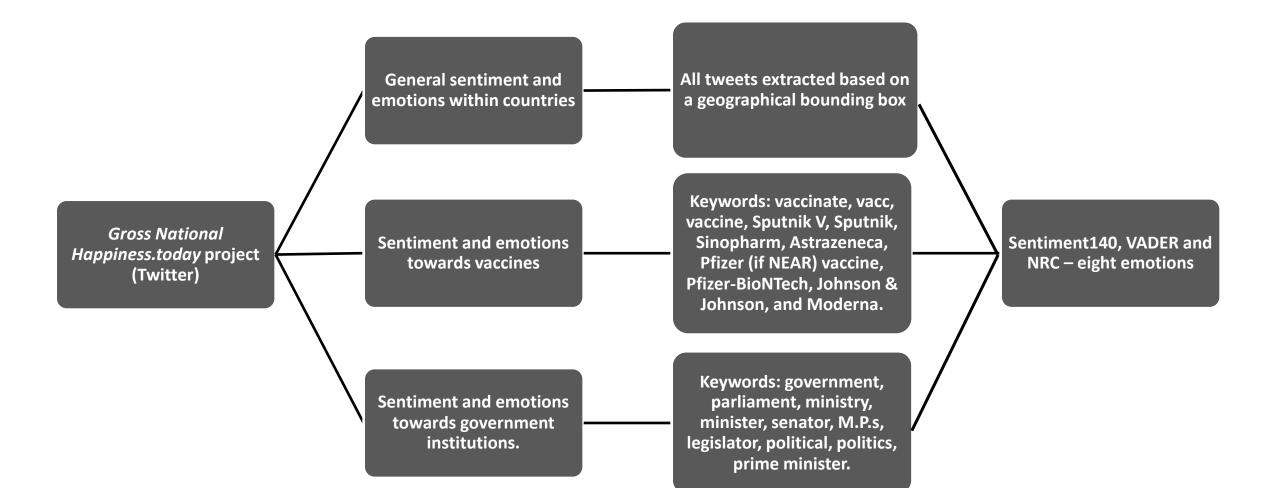
770 million cases and almost 7 million deaths

The problem:

The failure could have been avoided if we reached herd immunity. Herd immunity is achieved from previous infection or through vaccination. Vaccination is the method of choice (WHO).

To achieve herd immunity, early estimates were a threshold of 70% of the population. However, because of mutation and infectiousness, estimates changed to 90%.

Aim of the Study


- Retrospective evaluation of the COVID-19 pandemic especially concerning vaccinations - to determine the most important factors to reach herd immunity at the 70% and 90% vaccination threshold seen as the "golden standard".
- 2. Determine whether subjective well-being measures contribute to higher vaccine uptake. Why?
 - We know that decisions are driven by emotions not the rational man theory

Data - 1

- 1. Period under consideration 1 December 2020 to 16 September 2022.
- 2. Ten countries Northern and Southern hemispheres.
- 3. Four merged datasets Google COVID-19 Open Data, 3 datasets from GNH.today

Australia		
Belgium		
Germany		
Spain		
France		
Great Britain		
Italy		
The Netherlands		
New Zealand		
South Africa		

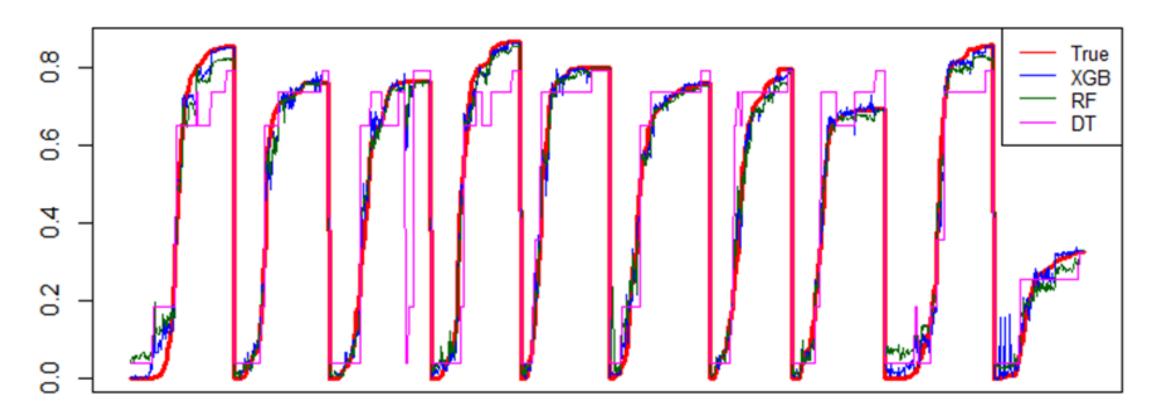
Data - 2

Methodology - 1

Supervised machine learning in the form of:

- 1. XGBoost algorithm tree-based ensemble method implements gradient boosting.
- 2. More efficient
 - Computationally much lighter
 - Outperforms most supervised algorithms
- 3. Random Forest and Decision Tree as robustness tests.

Methodology - 5


Step 1: Training the model

- Total data is split into a training and testing dataset 80:20 split.
- XGBoost model uses a maximum tree depth of seven. Run for 100 iterations with an early stop if the RMSE is not improved after five iterations. The model converges after 16 iterations.
- The Random Forest model. After 50 trees, it seemed as though the model converged, but upon further inspection of the model, the results continued to improve with minute increments with each additional iteration. We limit the number of iterations to 200.
- The Decision Tree model was easier to train since we have one tree with 8 nodes.

Results – Model evaluation 1

Model	MSE	MAE	RMSE
XGBoost	0.001412552	0.022707714	0.0375839
Random Forest	0.001861686	0.029981258	0.043147264
Decision tree	0.01222601	0.07180425	0.11057130

Results – Model evaluation 2

True value with all model predictions

Results - interpretation of results based on XGBoost

90% vaccine threshold	70% vaccine threshold	
Vaccination policy	Vaccination policy	
International travel controls	Population aged between 10-19	
Percentage of population in rural areas	International travel controls	
Happiness	Percentage of population in rural areas	
Average temperature	Average temperature	
Population density	Workplace closing	
Human Development Index	Restrictions on gatherings	
Facial coverings	Life expectancy	
Workplace closing	Happiness	
Restrictions on gatherings	Pollution mortality rate	

Conclusions – of Vaccines and happiness paper

- 1. Overlap in factors 70% threshold and 90% threshold:
 - Vaccination policy implemented,
 - International travel controls,
 - The percentage of the population in rural areas
 - Average temperature.
- 2. Happiness plays a major role in achieving a 90% vaccination threshold:
 - To reach 70% threshold can be achieved with policy measures (objective policy interventions). (Happiness 9th)
 - To reach 90% we need to consider subjective measures the mood of a nation. (Happiness 4th)
- 3. If governments want higher levels of compliance and vaccine uptake, subjective well-being measures such as mood and emotions must be prioritised.

A few published papers using GNH.today data

Greyling T, Rossouw S . 2024. Reactions to macro-level shocks and re-examination of adaptation theory using Big Data. PLoS ONE 19(1): e0295896. https://doi.org/10.1371/journal.pone.0295896 Greyling, T. & Rossouw, S . 2024.

Sarracino, F., **Greyling, T**., O'Connor, K., Peroni, C. & Rossouw, S. 2023. A Year of Pandemic: Levels, Changes and Validity of Well-being Data from Twitter. Evidence From Ten Countries, *PLOS ONE*, *18*(2), e0275028. <u>https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0275028</u>

Greyling, T., Rossouw, S & Steyn, D. H. W. 2022. The Prediction of Intra-Day Stock Market Movements in Developed and Emerging Markets using Sentiment and Emotions from Twitter. *Finance India*. 24(3): 907-939.

Adhikari, T., **Greyling, T.** & Rossouw, S. 2022. The ugly truth about social welfare payments and households' subjective well-being. *South African Journal of Economic and Management Sciences*, 25(1).

Greyling, T. & Rossouw, S. 2022. Positive attitudes towards COVID-19 vaccines: A cross-country analysis. PLoS ONE 17(3): e0264994. <u>https://doi.org/10.1371/journal.pone.0264994</u>

Greyling, T., Rossouw, S. & Adhikari, T. 2021. The good, the bad and the ugly of lockdowns during Covid-19. PLoS ONE 16(1): e0245546. <u>https://doi.org/10.1371/journal.pone.0245546</u>

Rossouw, S., Greyling, T. & Adhikari, T. 2021. Happiness lost: Was the decision to implement lockdown the correct

Conclusion

- Using social media data we can capture the happiness and emotions of people in real-time
- Statistical offices should experiment with big data and implement data derived from Big Data and Social Media – it gives access to real-time data and can be used alongside survey data.

Questions?

